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Outline

• Maximum parachute structural loads almost 
always occur during inflation

• Performance predictions frequently require 
accurate inflation time predictions
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Why Study Parachute Inflation 
Theory ?

• Maximum parachute structural loads 
almost always occur during inflation

• Performance predictions frequently 
require accurate inflation time 
predictions
– Usually less important than loads
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Is Parachute Inflation Theory a 
Difficult Topic ?

• Fluid Mechanics
– Unsteady, viscous often compressible 

flow about a porous body with large 
shape changes

• Structural Dynamics
– A tension structure that undergoes 

large transient deformations
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Is Parachute Inflation Theory a 
Difficult Topic ?

• Materials
– Nonlinear materials with complex strain, 

strain rate and hysteresis properties
• Coupling

– All of the above disciplines are strongly 
coupled
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Parachute Inflation Stages

• Initial inflation until 
vent pressurized

• Final inflation fro 
vent pressurization 
to full open

• Initial inflation can 
start during 
deployment
– Usually desirable
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Steady Flow Equation

• Bernoulli equation for steady, inviscid, 
incompressible flow along a streamline 
(perfect fluid)

– P = pressure 
– ρ = density
– V = velocity 
– C = constant

CVP 2 =+
2
1

ρ
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Steady Flow Around Sphere

• Pressure distribution on a sphere in 
steady, inviscid, incompressible 
flow (perfect fluid)

– P∞ = pressure far from sphere
– θ = angle from stagnation point

22 V
8
5  -  cos

8
9P - P







=∞ θ

ρ
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Steady Flow Drag Force

• Drag force on body in steady flow

– D = drag
– Cd = drag coefficient
– S = area

SV
2
1CD d

2ρ=
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Perfect Fluid Steady Flow 
• Simple fluid model gives the correct 

functional form for drag force
• Shape of pressure distribution and 

magnitude of drag force are 
incorrectly predicted

• Real fluid effects due to viscosity 
and compressibility must be 
accounted for in pressure and drag 
coefficients
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Parachute Opening Shock

• The simplest form of estimating parachute 
opening shock load is to modify the steady drag 
equation
– Fmax = Ck Cd A Q
– Ck is parachute opening shock factor
– Cd is parachute drag coefficient
– A is reference area
– Q is dynamic pressure
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Parachute Opening Shock Factor

• Infinite mass opening shock factor is primarily a function of 
canopy porosity
– Infinite mass implies no deceleration during inflation
– Maximum load occurs at maximum diameter

• Finite mass opening shock factor is primarily a function of 
mass ratio (characteristic fluid mass/system mass)
– Finite mass implies significant deceleration during inflation
– Acceleration of a large fluid mass (relative to system mass) 

causes system deceleration due to momentum transfer
– Maximum load occurs early in inflation process
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Infinite Mass Opening Shock 
Factor

• Wind tunnel data for 
models with only 
geometric porosity 
variations

• Disreefed from nearly 
closed to full open in 
steady flow

• High opening shock 
the result of faster 
inflation at low 
porosities
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Finite Mass Opening Shock Factor

• Finite mass opening shock factor is primarily a function of 
mass ratio (characteristic fluid mass/system mass)
– Inverse ratio (system mass/characteristic fluid mass) also 

sometimes used
• Most common mass ratio used is [ρ(CdS)1.5/M ]

– Where ρ is atmospheric density 
– CdS is parachute drag area
– M is system mass

• Most extensive correlations 
– Ewing AFFDL-TR-72-3
– Knacke NWC TP 6575
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Finite Mass Opening Shock Factor

• For unreefed
parachute or 
inflation to 1st

reefed stage
• Data from other 

sources added to 
Knacke/Ewing data

• Data near Y-axis 
from infinite mass 
wind tunnel tests
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Finite Mass Opening Shock Factor

• For disreef of 
reefed parachute

• Data from other 
sources added to 
Knacke/Ewing data

• Data near Y-axis 
from infinite mass 
wind tunnel tests
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Finite Mass Opening Shock Factor

• Ewing/Bixby/Knacke
AFFL-TR-78-151

• Same data set as 
Knacke/Ewing data

• More specific data 
correlations from 
subsets of the data

• Extremes of data 
scatter shown with 
mean values
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Parachute Load Estimates

• Finite mass opening shock factors can be used to 
provide rapid estimates of parachute opening 
loads
– No computer code required
– Calculator or “back of the envelope” estimate
– Might need atmosphere table
– Accurate enough for most parachute design work
– Quick “sanity check” for computer codes
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Unsteady Flow Equation

• Bernoulli equation for unsteady, 
inviscid, incompressible and 
irrotational flow along a streamline 
(perfect fluid)

– φ = velocity potential (grad φ = V)
– t = time

C(t)
t

V
2
1P 2 =

∂
∂

++
φ

ρ
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Unsteady Flow Around Sphere

• Pressure distribution on a sphere in 
unsteady, inviscid, incompressible 
and irrotational flow along a 
streamline (perfect fluid)

– R = radius of sphere

t
V cosR

2
1V  -cos

8
9P-P 22

∂
∂

+

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=∞ θθ

ρ 8
5



Parachute Inflation and Opening 
Shock

21

Unsteady Flow Kinetic Energy

• For the same unsteady flow (unsteady, 
inviscid, incompressible, irrotational), 
the fluid kinetic energy can be written

– T = kinetic energy
– Ax = a fluid mass
– Vx = velocity of fluid mass ( body)

2
xx VA

2
1      T =
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Unsteady Flow Force
• The unsteady fluid force on a body in one-

dimensional motion is

• For a sphere, Ax can be written

Cax = 0.5  (apparent mass coefficient)
Rp = parachute radius

dt
dVA

V
T

dt
dF x

x
x

x −=







∂
∂

−=

3
paxx R

3
4CA πρ=
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Ballistic Equations of Motion

• The equations of motion used in most simple trajectory 
computer codes are the ballistic or zero angle of attack 
equations

m = system mass
g = gravitational acceleration
γ = trajectory angle

( ) SV
2
1C- sin g m

dt
dV A m 2

xd
x

x ργ=+

( ) γγ  cos g m
dt
dV A m xx =+
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Dimensionless Equations
• The ballistic equations can be written in 

dimensionless form

( )axt

2
xd

t

ax
r

*x

CK

VC
8
3

K
C   1F

 sin
*dt

dV
+

−









+

=
γ
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t
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d

+
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Dimensionless Variables and 
Parameters

• Dimensionless Variables

• Dimensionless Parameters

V0 = initial velocity

p

0

0

x
*x R

Vt*t
V
VV == ;

3
p

t
p

2
0

r

R
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mK
Rg

VF
πρ
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Unsteady Flow Around Expanding 
Decelerating Sphere

• Pressure distribution on an expanding, 
decelerating sphere in inviscid, 
incompressible and irrotational flow

dt
dV cosR

2
1V

8
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8
9P - P x2

x
2 θθ
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r VVcos
2
3

dt
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2
3 θ+++
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Unsteady Forces on Inflating, 
Decelerating Parachute

• Axial force along flight path

• Radial force

• No axial/radial coupling 







 +−=

dt
dAV

dt
dVAF x

x
x

xxu







 +−=

dt
dAV

dt
dVAF r

r
r
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Dimensional Analysis and Unsteady 
Flow Conclusions

• Dimensional analysis identifies dimensionless 
parameters that influence opening shock and 
inflation time
– Mass ratio    Kt = m / [(4/3) ρ π Rp

3]
– Froude number    Fr = V0

2 / (g Rp)  

• Simplified perfect fluid analysis provides insight 
into functional form of forces and pressure 
distributions



Parachute Inflation and Opening 
Shock

29

Drag Area vs Time Inflation Models

• Simplest models specified drag area vs time as 
input to a point mass trajectory code
– Inflation times often artificially adjusted to match loads
– Inflation times sometimes scaled using dimensionless 

time
• Use of drag area as an independent variable in 

trajectory codes explains use of drag area 
directly to calculate mass ratio

• Combined use of point mass computer code and 
the mass ratio Ck correlations improved use of 
this method



Parachute Inflation and Opening 
Shock

30

Continuity Equation Inflation Models

• More sophisticated models solved a conservation 
of mass equation for the parachute internal 
volume
– Mass flow in determines rate of change of internal 

volume
– Similar shapes used to get diameter and parachute drag

• Calculated shapes combined with point mass 
trajectory code 
– Apparent mass often used in equations of motion

• Extensive work by U. of Minnesota – Dr. Heinrich
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Similar Shapes Used in Continuity 
Equation Inflation Models

• Early shapes were 
simple because 
calculations were 
manual

• More realistic 
shapes allowed 
using computers

• Inflow and outflow 
assumptions 
required
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Constant Distance Theory  Models

• Another family of inflation models was 
based on the observation that “a 
parachute always inflates in a fixed 
distance traveled”

• This assumption is equivalent to the 
conservation of mass assumption
– A column of air ahead of the parachute 

eventually occupies the internal volume
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Constant Distance Theory  Models

• Both the conservation of mass and 
constant distance theory models assume 
dynamic similarity in the inflation process
– Parachute mass ratio doesn’t change much

• Instead of similar shapes, radial velocity 
can be directly specified to be a function 
of axial velocity 

• A compressibility correction to constant 
distance theory was proposed
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Proposed Compressibility Correction

• Compressibility  
correction assumed 
normal shock ahead 
of canopy for density 
correction

• Wind tunnel photo 
and drag data show 
this is incorrect
– Actual density change 

is small fraction of 
normal shock 
correction
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Simple Dynamic Inflation Model

• Model based on conservation of 
momentum
– Parachute inflation is a dynamics 

problem, not a quasi-static problem
– Single radial degree of freedom
– Rigid coupling parachute and payload
– Unreefed parachutes only
– Steady and unsteady aerodynamic 

effects
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Trajectory for Model

• Ballistic (zero 
angle of attack) 
trajectory

• Velocity at payload 
and parachute 
different because 
parachute moves 
toward payload 
during inflation
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Parachute Geometry for Model

• Similar shapes
– Hemispherical 

inflated part
– Conical uninflated

part
• Rigid coupling 

between parachute 
and payload
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Simple Dynamic Inflation Model

• Single canopy mass element located 
at maximum diameter point

• Steady radial force coefficient data 
based on inflated geometry

• Radial force to drag force ratio 
required to produce canopy shape 
was obtained from photographic data
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Simple Dynamic Inflation Model

• Equations were put in non-dimensional 
form
– A second mass ratio, the parachute mass ratio, 

was revealed
• Predictions of the model were compared 

with test data from the PEPP tests
• Predicted inflation time variations over the 

wide altitude range of tests agreed very 
well with PEPP data
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Non-dimentional Inflation Times for 
DGB Parachutes

• Dimensionless 
inflation times 
correlated well 
with parachute 
mass ratio over 
wide altitude range

• No compressibility 
correction 
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Non-dimentional Inflation Times for all 
PEPP Parachutes

• Dimensionless 
inflation times 
correlated well 
with lower bound 
of data

• No compressibility 
correction
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Non-dimentional Inflation Times for all 
PEPP Parachutes

• Dimensionless 
inflation times with 
compressibility 
corrections based 
on density 
estimate required 
for drag coefficient 
vs Mach number 
variation 
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Opening Shock Factor for all PEPP 
Parachutes

• Drag coefficient vs
Mach number from 
wind tunnel data

• Predictions span 
range of data 
scatter
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Conclusions from Simple Dynamic 
Inflation Model Study

• Parachute mass ratio should be 
considered an important scaling 
factor for use of parachutes in low 
density environment

• Compressibility correction appears 
to be much less than proposed for 
constant distance theory models
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More General Dynamic Inflation Model

• Two radial degrees of freedom
• Elastic elements couple parachute 

masses and payload
• Can be used to model reefed 

parachutes
• Parametric aerodynamic data for 

different porosities measured to 
provide design data base 



Parachute Inflation and Opening 
Shock

46

Trajectory for Model

• Ballistic (zero 
angle of attack) 
trajectory

• Velocity at payload 
and parachute 
different because 
parachute moves 
toward payload 
during inflation
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Forces on Mass Elements

• Two parachute 
mass elements
– Maximum diameter
– Skirt

• Radial force 
applied at 
maximum diameter 
element
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Elastic Constraints on Mass 
Elements 

• Allows different 
elastic properties 
for suspension 
lines and radials

• Realistic modeling 
of reefing line 
constraint and 
cutting of reefing 
line
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Use of Dynamic Inflation Model

• Used to design 
many parachutes 
at Sandia

• Reefing easy to 
include

• Also used to study 
wake overtake 
which occurs 
during rapid 
deceleration
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Multi-Element Dynamic Inflation 
Model

• Many mass 
elements used to 
model parachute

• Used to study 
parachute 
deployment and 
inflation in greater 
detail
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Multi-Element Dynamic Inflation 
Model

• Used to study 
variations of 
tension, radius, 
pressure and other 
variables along 
length of 
parachute
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